加载中...

3.3 最近公共祖先LCA


问题描述

求有根树的任意两个节点的最近公共祖先。

分析与解法

解答这个问题之前,咱们得先搞清楚到底什么是最近公共祖先。最近公共祖先简称LCA(Lowest Common Ancestor),所谓LCA,是当给定一个有根树T时,对于任意两个结点u、v,找到一个离根最远的结点x,使得x同时是u和v的祖先,x 便是u、v的最近公共祖先。(参见:http://en.wikipedia.org/wiki/Lowest_common_ancestor )原问题涵盖一般性的有根树,本文为了简化,多使用二叉树来讨论。

举个例子,如针对下图所示的一棵普通的二叉树来讲:

结点3和结点4的最近公共祖先是结点2,即LCA(3 4)=2 。在此,需要注意到当两个结点在同一棵子树上的情况,如结点3和结点2的最近公共祖先为2,即 LCA(3,2)=2。同理:LCA(5,6)=4,LCA(6,10)=1。

明确了题意,咱们便来试着解决这个问题。直观的做法,可能是针对是否为二叉查找树分情况讨论,这也是一般人最先想到的思路。除此之外,还有所谓的Tarjan算法、倍增算法、以及转换为RMQ问题(求某段区间的极值)。后面这几种算法相对高级,不那么直观,但思路比较有启发性,了解一下也有裨益。

解法一:暴力对待

1.1、是二叉查找树

在当这棵树是二叉查找树的情况下,如下图:

那么从树根开始:

  • 如果当前结点t 大于结点u、v,说明u、v都在t 的左侧,所以它们的共同祖先必定在t 的左子树中,故从t 的左子树中继续查找;
  • 如果当前结点t 小于结点u、v,说明u、v都在t 的右侧,所以它们的共同祖先必定在t 的右子树中,故从t 的右子树中继续查找;
  • 如果当前结点t 满足 u right) {
    int temp = left;
    left = right;
    right = temp;
    }

    while (true) {
    //如果t小于u、v,往t的右子树中查找
    if (t.value < left) {
    parent = t;
    t = t.right;

    //如果t大于u、v,往t的左子树中查找  
    } else if (t.value > right) {    
        parent = t;    
        t = t.left;    
    } else if (t.value == left || t.value == right) {    
        return parent.value;    
    } else {    
        return t.value;    
    }    

    }
    }

1.2、不是二叉查找树

但如果这棵树不是二叉查找树,只是一棵普通的二叉树呢?如果每个结点都有一个指针指向它的父结点,于是我们可以从任何一个结点出发,得到一个到达树根结点的单向链表。因此这个问题转换为两个单向链表的第一个公共结点。

此外,如果给出根节点,LCA问题可以用递归很快解决。而关于树的问题一般都可以转换为递归(因为树本来就是递归描述),参考代码如下:

//copyright@allantop 2014-1-22-20:01  
node* getLCA(node* root, node* node1, node* node2)  
{  
    if(root == null)  
        return null;  
    if(root== node1 || root==node2)  
        return root;  

    node* left = getLCA(root->left, node1, node2);  
    node* right = getLCA(root->right, node1, node2);  

    if(left != null && right != null)  
        return root;  
    else if(left != null)  
        return left;  
    else if (right != null)  
        return right;  
    else   
        return null;  
}  

然不论是针对普通的二叉树,还是针对二叉查找树,上面的解法有一个很大的弊端就是:如需N 次查询,则总体复杂度会扩大N 倍,故这种暴力解法仅适合一次查询,不适合多次查询。

接下来的解法,将不再区别对待是否为二叉查找树,而是一致当做是一棵普通的二叉树。总体来说,由于可以把LCA问题看成是询问式的,即给出一系列询问,程序对每一个询问尽快做出反应。故处理这类问题一般有两种解决方法:

  • 一种是在线算法,相当于循序渐进处理;
  • 另外一种则是离线算法,如Tarjan算法,相当于一次性批量处理,一开始就知道了全部查询,只待询问。

解法二:Tarjan算法

如上文末节所述,不论咱们所面对的二叉树是二叉查找树,或不是二叉查找树,都可以把求任意两个结点的最近公共祖先,当做是查询的问题,如果是只求一次,则是单次查询;如果要求多个任意两个结点的最近公共祖先,则相当于是批量查询。

涉及到批量查询的时候,咱们可以借鉴离线处理的方式,这就引出了解决此LCA问题的Tarjan离线算法。

2.1、什么是Tarjan算法

Tarjan算法 (以发现者Robert Tarjan命名)是一个在图中寻找强连通分量的算法。算法的基本思想为:任选一结点开始进行深度优先搜索dfs(若深度优先搜索结束后仍有未访问的结点,则再从中任选一点再次进行)。搜索过程中已访问的结点不再访问。搜索树的若干子树构成了图的强连通分量。

应用到咱们要解决的LCA问题上,则是:对于新搜索到的一个结点u,先创建由u构成的集合,再对u的每颗子树进行搜索,每搜索完一棵子树,这时候子树中所有的结点的最近公共祖先就是u了。

举一个例子,如下图(不同颜色的结点相当于不同的集合):

假设遍历完10的孩子,要处理关于10的请求了,取根节点到当前正在遍历的节点的路径为关键路径,即1-3-8-10,集合的祖先便是关键路径上距离集合最近的点。

比如:

  • 1,2,5,6为一个集合,祖先为1,集合中点和10的LCA为1
  • 3,7为一个集合,祖先为3,集合中点和10的LCA为3
  • 8,9,11为一个集合,祖先为8,集合中点和10的LCA为8
  • 10,12为一个集合,祖先为10,集合中点和10的LCA为10

得出的结论便是:LCA(u,v)便是根至u的路径上到节点v最近的点。

2.2、Tarjan算法如何而来

但关键是 Tarjan算法是怎么想出来的呢?再给定下图,你是否能看出来:分别从结点1的左右子树当中,任取一个结点,设为u、v,这两个任意结点u、v的最近公共祖先都为1。

于此,我们可以得知:若两个结点u、v分别分布于某节点t 的左右子树,那么此节点 t即为u和v的最近公共祖先。更进一步,考虑到一个节点自己就是LCA的情况,得知:

  • 若某结点t 是两结点u、v的祖先之一,且这两结点并不分布于该结点t 的一棵子树中,而是分别在结点t 的左子树、右子树中,那么该结点t 即为两结点u、v的最近公共祖先。

这个定理就是Tarjan算法的基础。

一如上文1.1节我们得到的结论:“如果当前结点t 满足 u


还没有评论.